35-光速是近似值还是精确值

35-光速是近似值还是精确值

2018-12-23    16'26''

主播: 汪诘谈科学精神

26 1

介绍:
听众不知凡几问了一个问题,光速到底是一个近似值还是一个精确值呢?我觉得通过回答这个问题可以引出很多有深度的知识和观念,非常值得深入回答。大多数普通人的第一感觉可能会觉得这个问题很简单嘛,光速应该是一个近似值嘛,我们日常生活中说某一个东西多少长,某个车跑的多少快,那肯定是一个近似值嘛,哪怕能够测量到小数点后面第 10 位,那也不代表就没有小数点后面第 11 位的值了嘛,速度这东西怎么可能是一个百分百精确的值呢?这么想是很正常的,我们在日常生活中,在任何场合下见到的对某一运动速度的数值,可以说无一例外都是近似值,这是由测量必然产生误差的本质决定的。但是,光速却是一个例外,如果你在某个地方看到光速写的是:299792.458 千米 /秒,那么这个数值就是一个百分之百的精确值。可能你会感到惊讶,科学家们凭什么说这个数值是百分之百的精确值呢?不是说任何测量都不可避免产生误差吗?要理解这个事情啊,我不得不简单说一下人类对光速测量和认识的历史。第一个在实验室测量出光速的人是法国人菲索,他用的就是非常著名的齿轮测量法,我在《时间的形状》中有详细的描述,他当时测量出来的数值大约是 31.5 万千米 /秒。速度的概念依赖于另外两个度量单位,就是米和秒。在菲索测光速的那个时代,科学家们对于 1 米是多长的共识是这样的:1 米就是经过巴黎的四分之一经线,也就是北极点至赤道总长度的1000万分之一,根据这个定义,法国人用铂金做成了一个米原器,当然,这个米原器的长度不可能刚好就是定义的长度,这就是说,从定义到米原器产生了第一次系统误差。各个生产尺子的单位就会以这个米原器为基准来生产尺子,那当然也不可能长度完全一致,这里就会产生第二次系统误差。然后,菲索再用尺子去测量眼睛到反射镜的距离,当然又会产生第三次测量误差。我们再来看菲索那个时代对秒是怎么定义的,一秒就是一个平均太阳日的 86400 分之一,所有生产计时器的厂家都根据这个定义去生产自己的计时器,那当然也会产生大小不一的第一次系统误差。再用这个已经有误差的计时器做各种测量,自然又会产生第二次测量误差。所以,在菲索那个时代,所谓的光速值,当然是一个近似值,因为无论怎么设计精密的实验,系统误差和测量误差理论上都是不可能完全消除的。不过,时代在发展,人类的认识水平也在不断地发展。随着我们对光速的不断深入研究,科学界终于在二十世纪初达成了共识,光速是不变的,也就是说,光速是一个固定值,我们且不论这个值到底是多少,反正是一个永恒不变的固定值,而且还不依赖于参考系,永恒不变就真的是绝对意义上的永恒不变。一旦建立了光速不变的科学共识后,科学家们就想,过去我们说光速,都是依赖于米和秒的定义,那既然光速是一个固定值,能不能反过来,让米的定义依赖于光速呢。这样,各个厂家在生产尺子的时候,就不用依赖于那个国际米原器了,米原器的缺点实在是太多了,连热胀冷缩都无法避免。所以,到了 1983 年,国际计量大会就讨论决定,把 1 米的定义修改为光在1/ 299792458 秒内走过的距离,那么这样一来,光速也就是成了一个定义出来的值,也就是299792458米 / 秒。而在此前的 1967 年,国际计量大会已经把秒的定义改为了:铯 133 原子基态的两个超精细能阶间跃迁对应辐射的9,192,631,770个周期的持续时间。这个定义提到的铯原子必须在绝对零度时是静止的,而且在地面上的环境是零磁场。这样一来,全世界的任何厂家在生产尺子的时候或者要生产标准长度的零件时,就可以借助这种自然现象中稳定的天然标准来生产了,不再需要像以前一样依赖某个人为制作的原器了。讲到这里,不知道你是否理解了为什么光速是精确值,不过我今天的回答还没有结束。关于科学活动中用到的各种计量单位,我们深入了解一些其中的冷知识,会对于我们理解科学到底是什么有很大的帮助。在生活中,我们会遇到各种单位,比如米、秒、千克,还比如用来描述食物有多少热量的千焦尔、大卡,描述灯泡功率的瓦等等,实际上,虽然都是常见单位,但是在科学中,他们的地位是有差别的。有一些单位比另一些单位更加基本。比如说,焦耳就是物理学中表示能量、功或者热量的单位,在经典力学中,1 焦耳的定义就等于施加 1 牛顿作用力经过 1 米距离所需的能量,所以,在经典力学中,多少焦耳也可以看成是多少牛顿·米,就是牛顿和米之间有一个表示乘号的小圆点。那 1 牛顿又是怎么定义的呢,它等于要使质量 1 千克的物体的加速度为 1 米 /秒2时,所需要的力。所以啊,牛顿的单位又可以写成是千克·米 / 秒2,那么,我们把牛顿的定义代入到刚才焦耳的单位中,就可以得到,焦耳也可以看成是千克·米2/ 秒2,好,到了这一步,用到的单位就全部都是最最基本的单位了,不可能再往下拆分了。我上面所说的这些,在物理学中有一个很高大上的名称,叫做量纲分析。所谓的量纲,指的就是一个物理量是由哪些其他更基本的物理量组成的情况,通俗的讲就是像我刚才说的那样,有一些单位可以转化成其他单位的组合。1954年是六个,1971 年增加了一个摩尔。所以,从 1971 年到现在,最最基本的物理量一共只有 7 个,这 7 个基本物理量统称为国际单位。有哪些呢,表示长度的米,表示质量的千克,表示时间的秒,表示电流强度的安培,表示温度的开尔文,表示发光强度的坎德拉和表示物质量的摩尔。就是这么七个基本单位,其他我们在日常生活中见到的所有单位都可以转换成这 7 个最基本单位的算术组合。如果不能转换,就只能说明那个单位还不是科学体系中的一员。那将来有没有可能增加新的国际单位呢?这个可能性是有的,但几乎可以肯定地说,国际单位的增加意味着重大的科学进展,绝对不是小事。另外想补充说明的是,这 7 个国际单位,除了千克依然在用 100 多年前的国际千克原器外,其他 6 个单位都已经用不依赖于任何人造物的基本自然现象来定义了。而千克也将在 2018 年11 月的国际计量大会上宣布最新定义,届时会把千克的定义基于普朗克常数来定义。明年,国际间频率咨询委员会将讨论对秒的重新定义问题。量纲分析在科学研究中是非常有用的,能够帮助科学家判断一个理论是否自洽。我记得以前看过一个视频,在一个学术报告中,现场问答的时候,有一位听众就站起来大讲特讲自己的理论,然后台上的人就问了一句,请问您刚才说的那个概念的量纲是什么?然后台下的人当场愣住了,因为他根本不知道什么叫量纲分析。像这样的观众,基本可以判定为没有受过最基础的科学训练,所以,也就不太可能做出什么有价值的科学发现。任何一个理论,如果想让大家承认是一个科学理论,那么在这个理论中提出的所有概念,都必须是可测量的,不但是可测量的,还必须可以用最基本的 7 个国际单位或者它们的组合来表示。这是一个区分科学理论和非科学理论的标准,比去讨论可证伪性要更加具备操作性,概念也很清晰。难怪,著名的开尔文勋爵说过一段很武断的话:如果你不能用测量数据说话,就请闭上你的嘴,因为你没有资格称自己是科学。因此,大家可以用这个标准来看待一下生活中经常会遇到的一些理论,我就不再举例了,以免又引起某些崇古人士的不悦,一切无法测量的理论都是非科学。但是话讲到这里,今天的问答还没有结束,由测量问题还可以引出一